Saturday, June 8, 2013

Prinsip Arah Putaran Motor

Prinsip Arah Putaran Motor
Untuk menentukan arah putaran motor digunakan kaedah Flamming tangan kiri. Kutub-kutub magnet akan menghasilkan medan magnet dengan arah dari kutub utara ke kutub selatan. Jika medan magnet memotong sebuah kawat penghantar yang dialiri arus searah dengan empat jari, maka akan timbul gerak searah ibu jari. Gaya ini disebut gaya Lorentz, yang besarnya sama dengan F.

Prinsip motor : aliran arus di dalam penghantar yang berada di dalam pengaruh medan magnet akan menghasilkan gerakan. Besarnya gaya pada penghantar akan bertambah besar jika arus yang melalui penghantar bertambah besar.

Contoh :
Sebuah motor DC mempunyai kerapatan medan magnet 0,8 T. Di bawah pengaruh medan magnet terdapat 400 kawat penghantar dengan arus 10A. Jika panjang penghantar seluruhnya 150 mm, tentukan gaya yang ada pada armature.

Jawab :
F = B.I.ℓ.z = 0,8 (Vs/m2). 10A. 0,15 m.400
= 480 (Vs.A/m)
= 480 (Ws/m) = 480 N.
Electromotive Force (EMF) / Gaya Gerak Listrik
EMF induksi biasanya disebut EMF Counter. atau EMF kembali. EMF kembali artinya adalah EMF tersebut ditimbulkan oleh angker dinamo yang yang melawan tegangan yang diberikan padanya.

Teori dasarnya adalah jika sebuah konduktor listrik memotong garis medan magnet maka timbul ggl pada konduktor.
Gambar 8. E.M.F. Kembali.
EMF induksi terjadi pada motor listrik, generator serta rangkaian listrik dengan arah berlawanan terhadap gaya yang menimbulkannya.
HF. Emil Lenz mencatat pada tahun 1834 bahwa “arus induksi selalu berlawanan arah dengan gerakan atau perubahan yang menyebabkannya”. Hal ini disebut sebagai Hukum Lenz.

Timbulnya EMF tergantung pada:
· kekuatan garis fluks magnet
· jumlah lilitan konduktor
· sudut perpotongan fluks magnet dengan konduktor
· kecepatan konduktor memotong garis fluks magnet

Tidak ada arus induksi yang terjadi jika angker dinamo diam.
Mengatur Kecepatan pada Armature

Berdasarkana persamaan di bawah ini :
Jika flux Φ tetap dijaga konstan, dan kecepatannya berubah berdasarkan armature voltage (Es). Dengan naiknya atau turunnya Es, kecepatan motor akan naik atau turun sesuai dengan perbandingannya.

Pada gambar di atas dapat dilihat bahwa Es dapat divariasikan dengan menghubungkan motor armature M ke excited variable – voltage dc generator G yang berbeda. Field excitation dari motor tetap dijaga tetap kosntan, tetapi generator Ix bisa divariasikan dari nol sampai maksimum dan bahkan sebaliknya. Oleh sebab itu generator output voltage Es bisa divariasikan dari nol sampai maksimum, baik dalam polaritas positif maupun negatif. Oleh karena itu, kecepatan motor dapat divariasikan dari nol sampai maksimum dalam dua arah. Metode speed control ini, dikenal sebagai sistem Ward-Leonard, ditemukan di pabrik baja (steel mills), lift bertingkat, pertambangan, dan pabrik kertas.

Dalam instalasi modern, generator sering digantikan dengan high-power electronic converter yang mengubah ac power dari listrik ke dc.

Ward-Leonard sistem lebih dari sekadar cara sederhana dengan menerapkan suatu variabel dc ke armature dari motor dc. Hal tersebut benar-benar dapat memaksa motor utnuk mengembangkan torsi dan kecepatan yang dibutuhkan oleh beban. Contohnya, misalkan Es disesuaikan dengan sedikit lebih tinggi daripada Eo dari motor. Arus akan mengalir dengan arah sesuai dengan gambar di atas, dan motor mengembangkan torsi yang positif. Armature dari motor menyerap power karena I mengalir ke terminal positif.

Sekarang, misalkan kita megurangi Es dengan mengurangi excitation ΦG. Segera setelah Es menjadi kurang dari Eo, arus I berbalik. Hasilnya, torsi motor berbalik dan armature dari motor menghantarkan daya ke generator G. Akibatnya, motor dc mendadak menjadi generator dan generator G mendadak menjadi motor. Maka, dengan mengurangi Es, motor tiba-tiba dipaksa untuk memperlambat.

Apa yang terjadi kepada power dc yg diterima oleh generator? Saat generator menerima daya listrik, generator beroperasi sebagai motor, mengendalikan motor ac nya sendiri sebagai asynchrounous generator. Hasilnya, ac power memberikan kembali ke rangkaian yang biasanya memberikan motor ac. Kenyataannya daya bisa diperoleh kembali, cara ini membuat Ward-Leonard sistem menjadi sangat efisien.

Contoh soal :
Calculate
a. Torsi motor dan kecepatan saat
Es = 400 V dan Eo = 380 V

b. Torsi motor dan kecepatan saat
Es = 350 V dan Eo = 380 V

Solution
a. Arus armature adalah
I = (Es – Eo)/R = (400-380)/0.01
= 2000 A

Daya ke motor armature adalah
P = EoI = 380 x 2000 = 760kW
Kecepatan motor adalah
n = (380 V / 500 V) x 300 = 228r/min

Torsi motor adalah
T = 9.55 P/n
= (9.55 x 760 000)/228
= 47.8 kN.m

b. Karena Eo = 380 V, kecepatan motor masih 228 r/min. Arus armature adalah
I = (Es-Eo)/R = (350-380)/0.01
= -3000A
Arusnya negatif dan mengalir berbalik; akibatnya, torsi motor juga berbalik. Daya dikembalikan ke generator dan hambatan 10 mΩ :
P = EoI = 380 x 3000 = 1140kW
Braking torque yang dikembangkan oleh motor :
T = 9.55 P/n
= (9.55 X 1 140 000)/228
= 47.8 kN.m

Kecepatan dari motor dan dihubungkan ke beban mekanis akan cepat jatuh dibawah pengaruh electromechanical braking torque.
Cara lain untuk mengontrol kecepatan dari motor dc adalah menempatkan rheostat yang di-seri-kan dengan armature (gambar di atas). Arus dalam rheostat menghasilkan voltage drop jika dikurangi dari fixed source voltage Es, menghasilkan tegangan suplai yang lebih kecil dari armature. Metode ini memungkinkan kita untuk mengurangi kecepatan dibawah kecepatan nominalnya. Ini hanya direkomendasikan untuk motor kecil karena banyak daya dan pasa yang terbuang dalam rheostat, dan efisiensi keseluruhannya rendah. Di samping itu, pengaturan kecepatan lemah, bahkan untuk rheostat yg diatur fixed. Akibatnya, IR drop sedangkan rheostat meningkat sebagaimana arus armature meningkat. Hal ini menghasilkan penurunan kecepatan yang besar dengan naiknya beban mekanis.

No comments:

Post a Comment